JOURNAL OF APPROXIMATION THEORY 36, 334-345 (1982)

On Walsh Equiconvergence
T. J. RIVLIN

Department of Mathematical Sciences,
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA

Communicated by Richard S. Varga
Received February 26, 1982

INTRODUCTION

The theorem of J. L. Walsh [3, p. 153], which is the inspiration of our
work, has the following setting. Let A(p) (1 < p < 00) be the set of functions
Sf(z), analytic in |z| < p and having a singularity on the circle |z| =p. If
S(2)=312,a;z, then we put

S(hD)= Y a2, 1)

and denote by L,(f; z) the polynomial of degree at most # which interpolates
to f at the (n + 1)-st roots of unity, i.e., if ®"*' =1 then

L,(f; w) = f(w).
The theorem of Walsh can then be stated as

THEOREM W. If f € A(p), then

lim (L(f;2)=S$,(f;2))=0, |z <p )

the convergence being uniform and geometric in |z| <t < p*. Moreover, the
result is best possible, in the sense that (2) fails for every z satisfying |z| = p*

Jor an f € A(p).

We wish to present some variations on this theme of Walsh equicon-
vergence. In Section 1, we generalize Theorem W by considering least-
squares approximations to f by polynomials of degree n on the mth roots of
unity (m > n + 1) and proving analogues of Theorem W. The case m=n + 1
is just Walsh’s result. Other generalizations of Walsh’s theorem may be
found in Cavaretta et al. [1]. In the second and final section, we consider
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Walsh-type equiconvergence among the functions analytic inside ellipses
with foci at +1.

If f € A(p) and
f(Z) = Z aij,
ji=0
then for j=0, 1, 2,...

_LJ f(Z)

a.=
/ 27 1z]=1 Z”+1

j f(e) ™" dp.

Let m be a positive integer. Put

2nki
Wy = 7™, k=0,.,m—1.

Then it is easy to see that for every integer /
1
wym=0,  mjl
0 (3)

=1, m|l

m

1
m

Consider the trapezoidal rule for a 2z-periodic function, g(¢),

1 2 1 %5
0 do= S g () s Ry = Tie) + Rel8) @
k=0
Put
gj((p)zf(eiw)e_ijw’ j= Os 1’ 25""
then v
(m) S G 1S (S P
aj = m(gj)—‘— Z f(wk.m) wk,m=_ wk,m < Z apwk,m)
m k=0 m k=0 p=0
[e¢] 1 m—1 .
=Y |3 ord ] )
=0 mi=e

and, in view of (3), we have

a(m) — aj + Z /+sm’ J = O, l, 2,..., (6)
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a formula for the error made in approximating the power series coefficients
by the trapezoidal rule.
Next, fix a positive integer n and suppose m > n + 1. Put

n
pn,m(f; Z) = Z a}’")zl'
j=0

Then we claim that

pn.m(ﬁ Z)zsn(Lm—-l(f); Z), (7)

where L, _, is the polynomial of degree at most m — 1 interpolating to f at
Wy, m> k=0,.,m—1. To establish (7) we need only observe that o™
remains unchanged if f(w, ,) is replaced by L, _,(f; w, ,) in (5) and thus
(6) implies that

m—1
L,_(fiz)= > af™z.
j=0

Furthermore, p, ,(f; z) is the least-squares approximation of degree n to f
0N {Wg pysees Wy} TO see this, note that taking (7) into account

m—1

f(wk.m) - pn,m(ﬂ wk,m) =f(wk,m) - Lm—l(f; wk,m) + Z aj('"l)(‘o{(.m

Jj=n+1
m—1
— (m), Jj
- Z a; wjk.m
j=n+1

(the sum on the right-hand side being set equal to zero when m =n + 1), and
so the inner products

m—1 m—1 m—1i
> [f(@em) = Pamlfs e ) Bhm= 2 & 3 wli=0,
k=0 Jj=n+1 k=0

for ¢ =0,..., n in view of (3).
Our main result is

THEOREM 1. Iff € A(p) and q is a fixed positive integer then: (i)

UM (P mn(fi2) = S (D=0, 2] <p™*, ®)

the convergence being uniform and geometric in |z| <t <p'*9, where
m(n):=nq +c, and c is a fixed integer. (ii) Moreover, the result is best
possible, in the sense that (8) fails for every z satisfying |z|=p'*? for an
fE€A(p).
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Proof. Given f € A(p) we have for any given n, in view of (6),

n

Prnlfi2)=Si(fi2)= 3 (@ ~a) =Y ( > a,.m) 2O

i=0

Now, f € A(p) implies that

hence, upon putting (0 <) ¢ < (p — 1)/2, there exists a ky(¢) such that for
k > ky(e),

a < (-0 +e))k- (10)

Put

Suppose that 7 2> p, then for |z| < 7 and n > ky(€), (9) and (10) yield

m

r r”*‘r"*’ —1

- . (11)

l—r wr—1

Panlfi) = S ADIK Y (z w) o
Jj=0 \s=1

If k, is now chosen so large that r” < 1 for n > k,, (11) implies that

| Panlfi 2) = Sy ) < P47 (—-Z-L) (12)

r—1
Hence, if we insist that in addition to 7 > r~! also
1
T < (13)

then

2rr¢

r—1

| Do min (3 2) = 8,0 2)| < ( ) oy (14)

for n > k,. Since ¢ > 0 may be chosen as small as we wish, part (i) of the
theorem follows from (13).

As for part (ii), we need only consider f(z) = (1 —z/p)~" and carry out a
straightforward computation beginning with (9) to see that (8) fails for this
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function (the same one Walsh used to prove his result best possible) for all z
satisfying |z| =p'*9.

Remarks

1. Since p, , is the least-squares approximation of degree n to f on the
mth roots of unity, Walsh’s theorem is the case m =n + 1 of Theorem 1.

2. Equation (7) implies that

pn,n+2(.f; Z) =Ln+1(ﬁ Z) - a;n++12) zn+1'
Thus

SO ns2) = Prons2(fs @ponia) = aﬁ,"fnz’wﬁfniz = a:x"++12)a-)k,n+2’
from which we can conclude (cf. Rivlin [2]) that p, ,,,(f;z) is the best
uniform approximation to f by a polynomial of degree at most » on the set

{Wo. s 2900 Wy 1.ne2) (With error [a{'F?]), since

n+1
" ; B o
S wk.n+2wk,n+2—'0, J—O,..., n.

P

k=0

Theorem 1 in this case is Theorem 7 of Cavaretta et al. [1].

3. As g— 00, P, tends to S,, which is the least-squares approx-
imation to fon all of |z]= 1.

2

Suppose 1 <p < co. Let C, be the ellipse, in the z-plane, which is the
image of the circle |w| = p, in the w-plane, under the mapping

w+ 1/w
Z——z_—.

Let A(C,) denote the set of functions, f(z), analytic inside C, and having a
singularity on C,. Let

f@= 3 4,T) (15)
k=0

(T,(z) is the Chebyshev polynomial of degree k and the stroke on a
summation sign means that the first term of the sum is to be halved), where

1 d
A=2 SO T

k=0,1,... (16)
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Put

n
s.(fiz)= Z'Aka(z), n=0,1,... (17
k=0

We wish to consider analogues of Theorem W in which various sequences of
polynomials will exhibit geometric equiconvergence with (17) in ellipses C,

with 7 > p.
As analogues of the interpolation in the roots of unity, interpolation in the
zeros or the extrema of the Chebyshev polynomials come to mind. Let us put

& = cos Eg;m—l)q, Jj=1l.,m
and
;7!(.”” =cos %, j=0,.,m,
so that
T,,,(C}'")) =0, j=l..,m
and

T,(n™)=(=1Y,  j=0,.,m.

A straightforward computation will verify that

4+v=2pm,
and
| —v|=2qm

ey,

U+v=2m

and

lu—vl#2rm  (1g)
or

1y 5,

i T.E™) T.E™) =

(g —v|=2sm
and
U+v#2rn

0, otherwise

640/36/4-5
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and also

u+v=2pm

and

| —v|=2qm
u+v=2m

and

| —v|#2gm (19)
or

4+ v+2pm
and
|u—v|=2qm

m,

7’

T, ™) T, (ni™) =
iZo

0, otherwise,

where the double stroke on a summation sign means that the first and last
terms are to be halved. Equations (18) and (19) will play the role of (3) in
this section.

2.1

We begin by considering the zeros of the Chebyshev polynomials. Given
SEA(C,) we put

2 m
am=— 3 fEMTL™),  k=0,1,2.., (20)
i=1

i.e., a{™ is the result of approximating 4, (given by (16)) by the appropriate
Gaussian quadrature formula. Upon substituting (15) in (20) and using (18)
we obtain, for k < m,

[s o]

a™=4,+ Z (‘—l)i(Azjm—k+A2jM+k)’ 1)

j=1

and observe that (21) remains valid for k =m. We now put
n
un,m(f; Z) = Z, d;(m)Tk(Z), nm. (22)
k=0

Let L,(f, T; z) be the polynomial of degree at most k which satisfies
L(f, T35 ) =), =L,k +1,
for each k=0, 1, 2,.... Then it is known (cf. Rivlin {2]) that

UnmlS32)=8,(Lp (i T);2), n<m (23)
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(and u, ,(fiz)=L,_,(f,T;z), incidentally). Moreover, if m>n, then
U, ,(f;z) is the least-squares approximation of degree n to f(z) on
{EW,..., &™), For,

m—1

un,m(f;z)=um—l,mf;z)”— S a;(M)Tk(Z)
k=n+1
m—1

=L, (fTs2)— Y a"T2)
k=n+1

in view of (22) and (23). Thus, for v=0, L,..., n,

S UE™ -t ENTED = S o (§ nemrem) <o

Jj=1 u=n+l

in view of (18), proving our assertion.
We are now in a position to discuss Walsh equiconvergence in the present
setting. We have, for m > n, according to (21),

Un,m(f> 2) — 8,5 2) ,(ZO (@™ —4,) T,(2)

" © (24)
2' <Z =1y (Aij—k+A2jm+k)) T\ (2).

k=0 \j=1

We begin by considering the case m=n + 1, i.e., the difference (24) is
L.(f,T;z)—s,(f;z). Recall that T, (z)=w*+w%)/2, put z=z,=
[p+p~")/2]€C,, and let

F@) = fle) =t = $ B Ty(2) 25)
o 1+,12 2z &R

k=0
where 0 < A=p~' < 1, in (24). Note that f, € A(C,). Then

,12('14-1)

[,y 1(fo3 20) = $4(fo5 Z0)l = m Z (A* + Aky?

S 12(n+l) 1_2"_/12
4 2 8

Since u, ,, ,(fo520) = L,(fy» T z,), we have arrived at the conclusion that a
Walsh-type theorem in the present context does not hold for interpolation in
the zeros of the Chebyshev polynomials.

To obtain some positive results, we return to (24) and put m =ng +c,
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where g>2 is a fixed positive integer and ¢ is any fixed integer.
Equation (24) yields

03 2) =5, S (S Qo]+ A

=1

(5o

if z is inside or on C_, where we suppose 72> p. Since the assumption that
S € A(C,) implies that as k— oo lim |4,]'* =p~' we see that given ¢ >0
there exist ky(¢) such that for k£ > k,

4 < (5@ +e))k. @)

If we now put r= ((1 + &)/p) < 1, use (27) in (26) and sum the resulting
geometric progressions, we obtain, for » sufficiently large,

Iun,m(f; Z) - S"(ﬂ Z)I

1 r2m n

s 3 [ () () ()]
r2m (T/r)n+l
1—r* (t/r)—1

<

< 2 <M.t.nr2m—-n =Mrnr(2q—1)n+c’

for some constant M. Thus we have proved

THEOREM 2. If f€ A(C)) and q is an integer greater than 1 then

6 (g (3 2) = 5,3 2)) = 0. (28)

Jor z inside C,,,,, the convergence being uniform and geometric inside and
on C, for any t < p**~', where m(n) = nq + c and c is a fixed integer.

Remark 1. Equation (28) is sharp as can be seen by putting /= f; (as
defined in (25)) and z = [p*?~' + p~?971]/2 in (24), and repeating, mutatis
mutandis, the argument given in the case m =n + 1 above.

Remark 2. As g— o, u,, tends to s,, which is the least-squares
approximation of degree n to f on [—1,1] with the weight function
(1 —x*)~'2, This follows immediately from the fact of convergence of
Gauss—Chebyshev quadratures.

2.2,

We turn next to the extrema of the Chebyshev polynomials. Given
S EA(C,), we put
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2 = "
by = P D )T ™) k=0,1,2,. (29)
=90

i.e., b{™ is the result of approximating 4, (given by (16)) by the Lobatto—
Markov quadrature formula. Upon substituting (15) in (29) and using (19),
we obtain, for m > k,

bYW = A, + Z (Agjmsk + Asjms i) (30)
Jj=1
If m > n, we put
Vam(fi2)= X " BT (2). (31)
k=0

Let L,(f, U; z) be the polynomial of degree at most k£ which satisfies
L Usn)=f®),  i=0..k,
for each k=0, 1, 2,.... Then it is known (cf. Rivlin {2, Theorem 3.13]) that
V(s 2) =L,(f, U; 2). (32)

Now
L(f,Uiz)~s,(fiz)
= i, (Z (Ajn—xk +A2jn+k)) Ti(z) + (z A(2j+l)n) T,(z),
k=0 \jo =1

j=

and if we put f=f;, as given by (25) and z=z,=[(p+p ")/2]EC, in
this formula, we obtain

Ln(ﬁ)’ U; ZO) - sn(f; ZO)

/12?1 ’%1 . 2 /‘{2
— ! ﬂ._ /1" n -n .
20117 [* @A77 +amam 4 )]>2(1—Az)

Thus we conclude that a Walsh-type theorem does not hold for interpolation
in the extrema of the Chebyshev polynomial.

The polynomials v, ,(f;z) differ slightly from least-squares approx-
imations to /- Namely, put

n

tam(fs2)= 2 B T(2) = 0, m(f; 2) + 3BT (2).

k=0
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We claim that, for m>n + 1, ¢, ,(f; z) is the weighted least-squares approx-
imation of degree n to f(z) on {#{™,..., 7™}, the weight 1 being associated
with 7{™, 0 < i < m and weight 1/2 with 7™, n™. For, if m>n + 1,

Lnlfi2)= 2" 0" T(2)— X7 BTy (2)
k=0

k=n+1

“L (Ui — 3* BT G) (33)

k=n+1

where the asterisk on the summation sign means that the last term is to be
halved. Thus, for v=0, 1...., n,

S (™) =t 1D TOS™)

= S opm (Z" T, T.ri™)) =

u=n+1

in view of (19), thus establishing our claim.
We observe next that in view of (30)

tam(fs 2) = 8,(fs 2) = ;(Zo, 6" — A4,) Tu(z)

[ce)

= kio, (Z (Aom—r +A2jm+k)) Ti(2)- (34)

Upon comparing (34) to (24) we see that if we replace u, ,(f;z) by
t,.m(f; z) in Theorem 2 an equally valid result is obtained. But examining
(34) and (24) also suggests that we should examine the average,

)= a0 L) 69)

of the least-squares approximations of f on the Chebyshev zeros and
extrema. For (34) and (24) imply that

Wamlfi D) —sufir)= (50: Uumes + Aume)) T 36)

k=0 \j=1

and the same argument that led to Theorem 2 now provides
THEOREM 3. If f € A(C,) and q is a positive integer, then

}Lrg (wn,m(n)(.f; z)— sn(.f; z))=0, (37
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JSor z inside C ..., the convergence being uniform and geometric inside and
on C, for any © < p**~', where m(n)=nq + ¢ and c is a fixed integer.

Remark 1. Equation (37) is sharp as can be seen by putting f = f; (as
defined in"(25)) and z = [(p*?~' + p~“?"V)/2] in (36).

Remark 2. The case m(n)=n+1, ie, g=1, ¢=1 is particularly
interesting. For, in this case, according to (23), u, ,,,(f;z) =L,/ T;z),
while ¢, . ,(f; z) is the best uniform approximation to f(z) by a polynomial
of degree at most n on {7{"*™,..., n{ 1)}, This latter fact is easily seen since

(33) yields

tn.n+l(f; Z)=Ln+l(f; U; Z)_%btzii;anLl(z)’
so that for j=0,..,n+ 1,

(n+1)

f(ﬂ}"“)) - tn,n+1(.f; '7](’”+l)) = (_l)l —151—5

and we have Chebyshev alternation. An argument, by now familiar,
proceeding from (34) shows that ¢, ., ,(f; z) does not exhibit Walsh equicon-
vergence for f = f; and z = z,. We have already seen that the same is true of
L, (f, T; z). However, our theorem tells us that the average of interpolation in
the Chebyshev zeros and best uniform approximation on the Chebyshev
extrema does have the Walsh equiconvergence property within C,;.
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